Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645022

RESUMO

After initial bilateral acoustic processing of the speech signal, much of the subsequent language processing is left-lateralized. The reason for this lateralization remains an open question. Prevailing hypotheses describe a left hemisphere (LH) advantage for rapidly unfolding information-such as the segmental (e.g., phonetic and phonemic) components of speech. Here we investigated whether and where damage to the LH predicted impaired performance on judging the directionality of frequency modulated (FM) sweep stimuli that changed within short (25ms) or longer (250ms) temporal windows. Performance was significantly lower for stroke survivors (n = 50; 18 female) than controls (n = 61; 34 female) on FM Sweeps judgments, particularly on the short sweeps. Support vector regression lesion-symptom mapping (SVR-LSM) revealed that part of the left planum temporale (PT) was related to worse performance on judging the short FM sweeps, controlling for performance on the long sweeps. We then investigated whether damage to this particular area related to diminished performance on two levels of linguistic processing that theoretically depend on rapid auditory processing: stop consonant identification and pseudoword repetition. We separated stroke participants into subgroups based on whether their LH lesion included the part of the left PT that related to diminished short sweeps judgments. Participants with PT lesions (PT lesion+, n = 24) performed significantly worse than those without (PT lesion-, n = 26) on stop consonant identification and pseudoword repetition, controlling for lesion size and hearing ability. Interestingly, PT lesions impacted pseudoword repetition more than real word repetition (PT lesion-by-repetition trial type interaction), which is of interest because pseudowords rely solely on sound perception and sequencing, whereas words can also rely on lexical-semantic knowledge. We conclude that the left PT is a critical region for processing auditory information in short temporal windows, and it may also be an essential transfer point in auditory-to-linguistic processing.

2.
Res Sq ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38463953

RESUMO

In healthy adults different language abilities-sentence processing versus emotional prosody-are supported by the left (LH) versus the right hemisphere (RH), respectively. However, after LH stroke in infancy, RH regions support both abilities with normal outcomes. We investigated how these abilities co-exist in RH regions after LH perinatal stroke by evaluating the overlap in the activation between two fMRI tasks that probed auditory sentence processing and emotional prosody processing. We compared the overlap for these two functions in the RH of individuals with perinatal stroke with the symmetry of these functions in the LH and RH of their healthy siblings. We found less activation overlap in the RH of individuals with LH perinatal stroke than would be expected if both functions retained their typical spatial layout, suggesting that their spatial segregation may be an important feature of a functioning language system.

4.
Cereb Cortex ; 33(23): 11257-11268, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37859521

RESUMO

When brain regions that are critical for a cognitive function in adulthood are irreversibly damaged at birth, what patterns of plasticity support the successful development of that function in an alternative location? Here we investigate the consistency of language organization in the right hemisphere (RH) after a left hemisphere (LH) perinatal stroke. We analyzed fMRI data collected during an auditory sentence comprehension task on 14 people with large cortical LH perinatal arterial ischemic strokes (left hemisphere perinatal stroke (LHPS) participants) and 11 healthy sibling controls using a "top voxel" approach that allowed us to compare the same number of active voxels across each participant and in each hemisphere for controls. We found (1) LHPS participants consistently recruited the same RH areas that were a mirror-image of typical LH areas, and (2) the RH areas recruited in LHPS participants aligned better with the strongly activated LH areas of the typically developed brains of control participants (when flipped images were compared) than the weakly activated RH areas. Our findings suggest that the successful development of language processing in the RH after a LH perinatal stroke may in part depend on recruiting an arrangement of frontotemporal areas reflective of the typical dominant LH.


Assuntos
Transtornos da Linguagem , Acidente Vascular Cerebral , Recém-Nascido , Humanos , Idioma , Acidente Vascular Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Compreensão , Imageamento por Ressonância Magnética , Lateralidade Funcional
5.
Proc Natl Acad Sci U S A ; 119(42): e2207293119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215488

RESUMO

The mature human brain is lateralized for language, with the left hemisphere (LH) primarily responsible for sentence processing and the right hemisphere (RH) primarily responsible for processing suprasegmental aspects of language such as vocal emotion. However, it has long been hypothesized that in early life there is plasticity for language, allowing young children to acquire language in other cortical regions when LH areas are damaged. If true, what are the constraints on functional reorganization? Which areas of the brain can acquire language, and what happens to the functions these regions ordinarily perform? We address these questions by examining long-term outcomes in adolescents and young adults who, as infants, had a perinatal arterial ischemic stroke to the LH areas ordinarily subserving sentence processing. We compared them with their healthy age-matched siblings. All participants were tested on a battery of behavioral and functional imaging tasks. While stroke participants were impaired in some nonlinguistic cognitive abilities, their processing of sentences and of vocal emotion was normal and equal to that of their healthy siblings. In almost all, these abilities have both developed in the healthy RH. Our results provide insights into the remarkable ability of the young brain to reorganize language. Reorganization is highly constrained, with sentence processing almost always in the RH frontotemporal regions homotopic to their location in the healthy brain. This activation is somewhat segregated from RH emotion processing, suggesting that the two functions perform best when each has its own neural territory.


Assuntos
Idioma , Acidente Vascular Cerebral , Adolescente , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Adulto Jovem
6.
Neurobiol Lang (Camb) ; 3(3): 364-385, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35686116

RESUMO

Studies of language organization show a striking change in cerebral dominance for language over development: We begin life with a left hemisphere (LH) bias for language processing, which is weaker than that in adults and which can be overcome if there is a LH injury. Over development this LH bias becomes stronger and can no longer be reversed. Prior work has shown that this change results from a significant reduction in the magnitude of language activation in right hemisphere (RH) regions in adults compared to children. Here we investigate whether the spatial distribution of language activation, albeit weaker in magnitude, still persists in homotopic RH regions of the mature brain. Children aged 4-13 (n = 39) and young adults (n = 14) completed an auditory sentence comprehension fMRI (functional magnetic resonance imaging) task. To equate neural activity across the hemispheres, we applied fixed cutoffs for the number of active voxels that would be included in each hemisphere for each participant. To evaluate homotopicity, we generated left-right flipped versions of each activation map, calculated spatial overlap between the LH and RH activity in frontal and temporal regions, and tested for mean differences in the spatial overlap values between the age groups. We found that, in children as well as in adults, there was indeed a spatially intact shadow of language activity in the right frontal and temporal regions homotopic to the LH language regions. After a LH stroke in adulthood, recovering early-life activation in these regions might assist in enhancing recovery of language abilities.

7.
Handb Clin Neurol ; 184: 397-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034751

RESUMO

The language system is perhaps the most unique feature of the human brain's cognitive architecture. It has long been a quest of cognitive neuroscience to understand the neural components that contribute to the hierarchical pattern processing and advanced rule learning required for language. The most important goal of this research is to understand how language becomes impaired when these neural components malfunction or are lost to stroke, and ultimately how we might recover language abilities under these circumstances. Additionally, understanding how the language system develops and how it can reorganize in the face of brain injury or dysfunction could help us to understand brain plasticity in cognitive networks more broadly. In this chapter we will discuss the earliest features of language organization in infants, and how deviations in typical development can-but in some cases, do not-lead to disordered language. We will then survey findings from adult stroke and aphasia research on the potential for recovering language processing in both the remaining left hemisphere tissue and in the non-dominant right hemisphere. Altogether, we hope to present a clear picture of what is known about the capacity for plastic change in the neurobiology of the human language system.


Assuntos
Afasia , Transtornos da Linguagem , Acidente Vascular Cerebral , Adulto , Encéfalo , Criança , Humanos , Idioma , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Acidente Vascular Cerebral/complicações
8.
Hosp Pediatr ; 8(4): 227-231, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29514852

RESUMO

OBJECTIVES: Miscommunication has been implicated as a leading cause of medical errors, and standardized handover programs have been associated with improved patient outcomes. However, the role of structured handovers in pediatric emergencies remains unclear. We sought to determine if training with an airway, breathing, circulation, situation, background, assessment, recommendation handover tool could improve the transmission of essential patient information during multidisciplinary simulations of critically ill children. METHODS: We conducted a prospective, randomized, intervention study with first-year pediatric residents at a quaternary academic children's hospital. Baseline and second handovers were recorded for residents in the intervention group (n = 12) and residents in the control group (n = 8) during multidisciplinary simulations throughout the academic year. The intervention group received handover education after baseline handover observation and a cognitive aid before second handover observation. Audio-recorded handovers were scored by using a Delphi-developed assessment tool by a blinded rater. RESULTS: There was no difference in baseline handover scores between groups (P = .69), but second handover scores were significantly higher in the intervention group (median 12.5 [interquartile range 12-13] versus median 7.5 [interquartile range 6-8] in the control group; P < .01). Trained residents were more likely to include a reason for the call (P < .01), focused history (P = .02), and summative assessment (P = .03). Neither timing of the second observation in the academic year nor duration between first and second observation were associated with the second handover scores (both P > .5). CONCLUSIONS: Structured handover training and provision of a cognitive aid may improve the inclusion of essential patient information in the handover of simulated critically ill children.


Assuntos
Continuidade da Assistência ao Paciente/normas , Medicina de Emergência/educação , Transferência da Responsabilidade pelo Paciente/normas , Simulação de Paciente , Transferência de Pacientes/normas , Criança , Humanos , Comunicação Interdisciplinar , Equipe de Assistência ao Paciente , Estudos Prospectivos , Gravação em Vídeo
9.
Cancer Res ; 66(8): 4249-55, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618748

RESUMO

The extent of angiogenesis and/or vascular endothelial growth factor (VEGF) expression in neuroblastoma tumors correlates with metastases, N-myc amplification, and poor clinical outcome. Recently, we have shown that insulin-like growth factor-I and serum-derived growth factors stimulate VEGF expression in neuroblastoma cells via induction of hypoxia-inducible factor-1alpha (HIF-1alpha). Because another marker of poor prognosis in neuroblastoma tumors is high expression of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor, TrkB, we sought to evaluate the involvement of BDNF and TrkB in the regulation of VEGF expression. VEGF mRNA levels in neuroblastoma cells cultured in serum-free media increased after 8 to 16 hours in BDNF. BDNF induced increases in VEGF and HIF-1alpha protein, whereas HIF-1beta levels were unaffected. BDNF induced a 2- to 4-fold increase in VEGF promoter activity, which could be abrogated if the hypoxia response element in the VEGF promoter was mutated. Transfection of HIF-1alpha small interfering RNA blocked BDNF-stimulated increases in VEGF promoter activity and VEGF protein expression. The BDNF-stimulated increases in HIF-1alpha and VEGF expression required TrkB tyrosine kinase activity and were completely blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. These data indicate that BDNF plays a role in regulating VEGF levels in neuroblastoma cells and that targeted therapies to BDNF/TrkB, PI3K, mTOR signal transduction pathways, and/or HIF-1alpha have the potential to inhibit VEGF expression and limit neuroblastoma tumor growth.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/metabolismo , Receptor trkB/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Sistema de Sinalização das MAP Quinases , Neuroblastoma/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...